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Abstract

This paper provides details on the optimization of phase and amplitude of per-
turbations for simulated free shear layer flows. The goal of the optimization is
to maximize or minimize the rate of growth of the shear layer, based upon first-
principles physics-based simulations that represent solutions to the fully nonlinear
Navier-Stokes equations. These simulations have been obtained using a unique
method [1], [2] that considerably reduces the computational burden normally as-
sociated with obtaining such solutions. In fact, the development of active flow
control methodologies is often based upon reduced order models of the Navier-
Stokes equations to avoid this computational overhead. Various regression meth-
ods were used to approximate the shear layer thickness as a function of the phase
and amplitude of perturbations used to excite the flow dynamics as a proxy for
using a simulation based upon first principles, in order to reduce computational
burden even further. It was found that nonlinear regression methods overall out-
performed linear regression methods, owing to the fundamentally nonlinear nature
of the data.

1 Introduction

Free shear layers or mixing layers are ubiquitous in real world applications. For example, they are
found in flow reactors, cavity flows, flows over aircraft wings at angle of attack, bluff body wakes,
jets, etc. Often, there is a need to optimize the dynamics of such flows. The objective may be to
minimize or maximize the shear layer growth rate. In flow reactors, we seek to maximize it and in
other applications to minimize it. Maximization of growth rate produces efficient mixing of fluids in
flow reactors and thus an efficient reaction mechanism. Minimization of the growth rate suppresses
the cavity tones or jet exhaust noise, for example.

Many reduced order models (ROM) [3],[4],[5] have been proposed for mixing layers that can be
used to optimize such flows. These ROM are an approximation to the physics of such flows, but
they solve the control or optimization problem quickly. On the other hand, first-principles modeling
of mixing layers is an exact representation of the physics of such flows, but they take too long if we
seek to optimize these flows. First principles modeling requires the solution of Navier-Stokes equa-
tions of fluid dynamics that are highly nonlinear. These solutions on present day supercomputers
take on the order of hours to days to compute. Therefore they are not a viable route for optimiza-
tion of these flows in real world applications. But, a unique method [1],[2] has been devised to
optimize such flows that is based on first principles. This method uses transformations between spa-
tially growing mixing layers and time-evolving mixing layers that eliminates the need to compute
the spatially growing layer directly. Instead, a time-evolving layer is computed that takes orders of
magnitude less time. The execution speed of this approach is on the same order as the ROM men-
tioned earlier. Hence, we focus on this approach in this study to generate some canonical solutions
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(data) rapidly and we explore various methods of developing a proxy or a surrogate to model the
data thus generated , based on the time domain results.

2 Methodology

A variety of regression methods can be used to obtain the best fit to data generated from the simula-
tions discussed in Sec. 1. The motivation is to use the resulting model as a data-driven proxy; i.e.,
an equivalent simulation to the physics-based Navier-Stokes equations at a greatly reduced com-
putational burden, similar to what was performed by Pressburger et al. [6]. To facilitate selection
of the best performing regression method, the NMSE (Normalized Mean Square Error) metric was
used. This metric aided hyperparameter selection for the applicable regression methods by offering
the ability to optimize the NMSE as an objective function of the hyperparameters. The normalized
mean-square error (NMSE) [7] is the mean-square error divided by the variance of data; this allows
for comparing regression techniques because it compensates for the difficulty of fitting the data.
Low values of NMSE indicate a better fit. It is a traditional metric for assessing the goodness-of-fit
of a regression algorithm which governs model fidelity, and is often a better choice than using the
RMS (root-mean square) due to the ability to compare regression algorithms more equitably.

Formally, the optimization used for regression can be posed as shown in Eqn. 1, with the NMSE
metric as the objective, where the index k represents the time index, yk represents the actual target
parameter value, and ŷk represents the estimated target parameter value. The target parameter value
of interest for our application is the free shear layer thickness at a simulation time corresponding to
the first pairing. Any number of optimization techniques can be used to solve this problem, however
here a simple grid search was sufficient based upon the limited number of tuples (P = 102) used to
fit a model.

minimize J =

∑P
k=1(yk − ŷk(λ))2∑P

k=1(yk − ȳ)2
(1)

subject to
λ ∈ S

where

P = number of (phase, amplitude) tuples

ȳ =
1

P

P∑
k=1

yk

ŷk(λ) = f(uk, λ)

uk = Vector of regressors
λ = Regression-specific hyperparameter
S = Regression-specific hyperparameter tuning domain

2.1 `2 regularized linear regression (Ridge Regression)

One of the regression methods tested was linear ridge regression, in which the associated regular-
ization coefficient was used as a hyperparameter to optimize the MSE as a function of how well
conditioned the solution should be. A well-posed or well-conditioned problem is one that yields
a solution that meets the criteria of existence, uniqueness, and robustness (e.g. low sensitivity to
natural variation in the data). The linear regression techniques to be evaluated are linear in the pa-
rameters to be estimated only, however basis functions for the regressors themselves to be studied
will involve both affine and quadratic regressors in the same vein as was presented in both [6] and
[8]. As such, both linear and quadratic regressors were used, where the use of quadratic regressors
include the x2i regressors as well as all

(
N
2

)
quadratic pairs of parameters, xi and xj .
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2.2 Support Vector Regression (SVR)

In this subsection, a brief description of the η−support vector regression algorithm used for tar-
get prediction is provided, as documented in [9]. Given a finite set of multivariate observations,
it is possible to reconstruct an input and target set that takes the form shown in Eqn. 2, where

U
4
= [u0 . . .uP ]

> is an input data matrix of size (P × 2) and the corresponding output is denoted

by y
4
= [y0 . . . yP ]

>, called the target vector. Thus, there are 2 parameters and P observations. Once
the η−support vector regression algorithm is appropriately trained, it is possible to estimate a target
function f(uk) that imposes an upper bound of η on the actual number of observed targets {yk}Pk=0

for all the input data {uk ∈ R2}Pk=0.

y = f(U) (2)

The target function f(·) is a linear combination of specific weighted training and test points with an
additional offset which is often known as bias, ρ. The chosen training instances with m non-zero
weights are called support vectors (SVs, ui) and they are the statistically sufficient representatives
of the model. This implies that given the model, any training points not associated with SVs can
be discounted without changing the performance of the algorithm. The target function is shown in
Eqn. 3.

f(uk) =

m∑
i=1

(αi − α̂i) 〈ui,uk〉+ ρ (3)

The support vectors and their corresponding weights, αi and α̂i result from the solution of a
quadratic programming optimization problem in dual form. The expression of the primal prob-
lem is shown in Eqn. 4. Further details on the cost function and optimization problem can be found
in Smola and Schölkopf [9].

minimize P
(
q, C, ξ+k , ξ

−
k

)
=

1

2
qq> + C

T∑
k=0

(
ξ+k + ξ−k

)
subject to

(
zk − q>φ(uk)− ρ

)
≤ η + ξ+k(

zk − q>φ(uk)− ρ
)
≥ η + ξ−k

ξ+k , ξ
−
k ≥ 0

C > 0 (4)

C and η are user specified regularization and precision parameters respectively. They are chosen
according to the practical guidelines set forth in [10]. ξ+, ξ− are non-zero slack variables, q is the
weight vector normal to the separating hyperplane, ρ is the offset parameter, φ(uk) represents the
transformed image of uk ∈ R2 in the same Euclidean space, and k ∈ [0, . . . , P ]. In this paper
we have used the RBF (Radial Basis Function) as the mapping function given in Eqn. 5, where σ
represents the hyperparameter of the Gaussian function.

〈ui,uk〉 = exp

(
−1

2

‖ uk − ui ‖2

σ2

)
(5)

The hyperparameter σ, also known as the “kernel width” parameter, controls the overall scale in
horizontal variations. More details on SVR can be found in other work [11].

2.3 k-nearest neighbor regression (k-NN)

k-NN, or k-nearest neighbor regression is most useful for mapping data that is often represented
in high-dimensional spaces to lower dimensional manifolds. As such, it is often used for contrast
to linear dimensionality reduction techniques such as PCA (Principle Components Analysis). In
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fact, this regression technique may be very well suited to the task at hand, as it is well known that
fluid flow governed by the nonlinear Navier-Stokes partial differential equations contain infinite de-
grees of freedom. Techniques for representing such data in lower dimensional nonlinear manifolds
have also been studied and well understood for some time now [12] through the Lorenz model.
Although the input space spanned by the (phase, amplitude)-tuple is limited to two dimensions,
it would still explicitly benefit from the implicit dimensionality reduction capability that k-NN re-
gression offers. The (phase, amplitude)-tuple can be considered as the latent points defining the
low-dimensional representation of the data space (the shear layer thickness), which contains high
dimensional patterns. k-NN regression assumes that points in the data space that are located in close
proximity to each other have similar output values (i.e. the shear layer thickness). As such, for novel
(phase, amplitude)-tuples presented to the regression algorithm, the output values must be located
in close proximity to those k nearest points having similar patterns in higher dimensional space,
and so the hyperparameter used for k-nn (nearest neighbor) regression is the number of nearest
neighbors. More details on this regression method can be found in [13].

2.4 `1 regularized linear regression (Lasso)

Another regression method to be investigated is a regularized sparse linear regression method known
as LASSO (least absolute shrinkage and selection operator) [14]. Its hyperparameters are already
implicitly optimized as part of its algorithm. A valuable benefit which can be derived from using
lasso regression is that it can be used to find influential variables due to the nature of its `1 sparsity
“regularization” penalty. Sparseness penalizes the number of non-zero coefficients associated with
the linear regression, translating to a “sparse” solution. Due to the nature of the inequality constraint
associated with the regularization penalty, the solution is achieved by appealing to the use of cyclical
coordinate descent in an iterative fashion, which yields a regularization path of candidate solutions
until the algorithm runs to completion. It has been shown [15] that lasso regression is equivalent to
a simple linear correlation analysis, which can be used to select the linearly influential variables as
well. However, this feature is not very relevant for our case in which there are only two independent
variables: magnitude and phase, and thus there is no need for feature selection. However, we use it
to contrast among the other regression techniques described in this section.

2.5 Bagged neural nets (BNN)

Artificial neural networks are a well known machine learning technique that was popularized
decades ago, and has recently seen a resurgence through a different incarnation which has been
called “deep learning.” In this study we will only consider traditional neural networks with a single
layer perceptron as distinct from “deep learning” techniques which exploit the use of multiple hidden
layers. Fundamentally, neural networks offer the ability to capture nonlinearities in data by learning
weights associated with nodes in a network that are linearly combined and ultimately transformed
through a nonlinear mapping. More details on neural networks and the bagging, or bootstrap aggre-
gating process which aims to aggregate ensembles of neural networks trained on datasets generated
from the same source can be found in [16]. Bagging is meant to address deficiencies in stability and
accuracy of the neural net performance and also reduces variance to help prevent overfitting. How-
ever, due to the lack of complexity in fitting the data for this problem, a single base model was used
and no bagging was necessary. The hyperparameter used for bagged neural nets (BNN) regression
is the number of hidden units in a single layer perceptron.

3 Discussion and Results

A comprehensive listing of the results for all regression techniques and their respective near global
optima are provided in Table 2. Table 1 describes the hyperparameters used for each regression
method. Our findings indicate that nonlinear regression methods: support vector regression (SVR),
k-NN (nearest neighbor) regression, and neural networks are far superior to the linear regression
methods. This suggests inherent nonlinearity in the data, which is also apparent in Figs. 1-3, where
the fit of these best three performing nonlinear regression techniques have been illustrated. The top
panel of each of the three figures represent the results of hyperparameter optimization. Each panel
respectively illustrates the result of a grid search, showing the NMSE as a function of the number
of nearest neighbors (kNN regression), the number of hidden units (BNN regression), and the the
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kernel width, σ (SVR). Both the optimized function and hyperparameter values are also shown,
mirroring the results shown in Table 2.

Table 1: Tunable Regression Hyper-parameters

Regression
Method

Regression Description Hyper-
parameter

Hyper-
parameter
description

SVR Support Vector Regression σ Kernel Width

k-NN k-NN Regression k Number of
nearest neighbors

LR1 Ridge (linear) regression
using linear regressors

λ `2 regularization
coefficient

LR2 Ridge (linear) regression
using quadratic regressors

λ `2 regularization
coefficient

LR3 LASSO (linear) regression λ `1 regularization
coefficient

BNN Bagged Neural Networks nh number of hidden
units

Table 2: Regression Results
Optimization Results SVR k-NN LR1 LR2 LR3 BNN
Optimized Hyperparameter Value 1.12 2 7.9 376.5 5.74× 10−5 4
Optimized Function Value† 0.125 0.14 2.43 3.64 1.054 0.115
† For the objective function shown in Eqn. 1

The middle panels of each of Figs. 1-3 are identical, and illustrate a contour-filled level set view of
the actual shear layer thickness as a function of the phase and amplitude. The color bar to the right
of the panel indicates the thickness. Finally, in order to gain a qualitiative appreciation for the results
quantified in Table 2, the bottom panel of each figure provides a similar contour plot of the surface
resulting from application of the respective regression technique. This plot provides an estimate of
the shear layer thickness as a function of the perturbation phase and amplitude for each respective
nonlinear regression technique, which offers the ability to perform a qualitative comparison to the
actual shear layer thickness in the panel directly above it.

Figs. 4(a,b) show how the shear layer thickness has evolved over simulation time of 2.5 correspond-
ing to first pairing of two large structures in the free shear layer, with the phase shift φ as a parameter.
Fig. 4(a) represents one scenario and Fig. 4(b) represents a second scenario out of many, based on
two different forcing levels (amplitudes). The shear layer thickness contour plot shown in Figs. 1, 2
and 3 represents results corresponding to all the forcing levels and the phase shifts of perturbations
used in the CFD simulation at a simuation time of 2.5 seconds. Fig. 4(a) shows results coresponding
to the forcing level of subharmonic,As, being half that of the fundamental, Af , and Fig. 4(b) shows
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Figure 1: Shear Layer Thickness k-NN Regression Results
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Figure 2: Shear Layer Thickness SVR Regression Results
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Figure 3: Shear Layer Thickness BNN Regression Results
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Figure 5: Instantaneous Passive Scalar Contours

results corresponding to As = 16.0*Af . Fig. 4(a) shows a linear growth upto simulation time of 2.5,
while Fig. 4(b) shows that nonlinear growth sets in much earlier.

Figs. 5(a,b) show the passive scalar contour plots corresponding to Figs. 4(a,b), respectively, which
demonstrate a marked difference in the extent of mixing between the two forcing levels.

Finally, a comparison of run-time for both training and testing all regression modes is provided in
Table 3. It is clear that the testing time for all regression methods for one set of amplitude and
phase shift is on the order of milliseconds, as measured on a PC. Due to the fundamental nature
of the algorithm, training and testing are executed simultaneously for the k-NN regression method,
and as such the testing time is blocked out. It should be noted that it takes one CFD simulation
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Table 3: Run-Time Results in Seconds
SVR k-NN LR1 LR2 LR3 BNN

Training Time 0.0034 0.0176 0.0128 0.0238 0.001176 0.388
Testing Time 6.82× 10−4 4.69× 10−4 0.0108 7.4× 10−5 0.0066

corresponding to one set of amplitude and phase shift about 0.3 second on a Mac laptop to generate
the training data represented in the midlle panels of Figs. 1, 2 and 3. For any other combination
of phase and amplitude not reflected in these figures, it will be faster to use the surrogate models to
predict the shear layer thickness, rather than the CFD simulation.

4 Concluding Remarks

The resulting NMSE for LASSO and other linear regression-based techniques were unfortunately
not small enough to use as proxy for the physics-based Navier-Stokes equations. As such, we have
found that the nonlinear regression methods offer the best approximation to the corresponding CFD
simulations, both quantitatively and qualitatively. Furthermore, we have demonstrated that using
any of the nonlinear (or even linear) regression methods as a surrogate for the CFD simulation based
upon the Navier-Stokes equations reduces the computational burden considerably. The appreciable
gap in computation time achieved is thus also well below what is currently known to be required
for the development of active flow control methodologies based upon reduced order models of the
Navier-Stokes equations.
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